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Fig. 6 This figure illustrates a critical shortcoming of constant
threshold processing. The slowly varying maximum centered at Ip
presumably has its origin in the non-uniform background scene. The
narrower, lower amplitude spike centered at 1, is due to a target.
The likelihood of a false alarm (i.e., a clutter-induced threshold cross-
ing) grows rapidly as the threshold level v,, is reduced. There is no
way for the constant threshold processor to detect the target peak at
i,, without also incurring a false alarm arising from the clutter peak
centered atl,.

A plot of the threshold crossing rate ,;i(r) corresponding to
this figure would show that the probability of a threshold crossing,
and hence a false alarm, is far greater at time 1, than at any other
time,

The large, relatively slowly varying maximum centered at t,, in Fig. 6 is presumed to have
its origin in the background scene. The narrower, lower amplitude spike centered at f, in Fig. 6
is presumed to be due to a "target."

It follows from Eqs. (13) and (9) that the likelihood of a clutter-induced threshold cross-
ing grows rapidly as the threshold level y, in Fig. 6 is lowered. A clutter-induced threshold
crossing (i.e., a "false alarm") becomes a virtual certainty6 when there is a 'Mean-crossing," i.e.,
when the threshold level actually intercepts the mean current my(t). [17,181 There is
apparently no way for the constant threshold processor to detect the target peak at tr without
also incurring a false alarm arising from the clutter peak centered at I,,.

(Cosshig Rates fbr C'nstant False A/artn Rare (C(FAR) Adaptive Thresh old Deteclion

The performance of an adaptive-threshold processor is illustrated with the aid of Fig. 7.

The processor is presumed to have some means for deriving high-confidence estimates for
ttty(t) and *r t(1), defined as tFh)- and c; y, respectively, When my(t) is "slowly-varying" the pro-
cessor establishes y,(f) as:

Y,(z) = Jr (t) + K CT (P). (14)

Thsis has been estiablished by integrating the crossing rate lunction ou1rJ over an interval of time containing a time point
,,,f. for which: mnll 0*Q/ = r,. An asymptotic analysis (lci. Ret'. 17) has shown that the crossing rate integral Iiq. (12) is
incremenled by unity for each such timne i,,,. contained in the interval olr integralion T,. Tlhis result is not at all surris-
ing, ant maily he taken is evidence that the theory developed here is consistent with common sense.
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The kind of processor just described has been called a constant false alarm rate (CFAR)
processor, since the threshold crossing rate is now independent of time, i.e., a crossing is no
more likely to occur when scanning a region of non-uniform background than when scanning a
region of uniform background. For example, with reference to Fig. 7, the crossing rate is now
no greater at to than at any other time.

Unfortunately, the CFAR processor is generally a non-realizable ideal: it has been
assumed that the processor is able to estimate the quantities m y) and a y(t) to as high a pre-
cision as desired. Errors in the estimated values for my and a y are usually unavoidable, giving
rise to appreciable time-dependence in Eq. (15) for u(t).

ANALYSIS

Introduction

The objective of the next subsection is to present an expression for the expected value of
the number of times a nonstationary noise YG) crosses a nonstationary stochastic threshold
Yi't (0

The crossing-rate formulation that results, Eqs. (25) and (27), requires knowledge of the
joint density function fy'H j, of the current Y(t), its time derivative Y(t), the threshold Y0 G),

and its time derivative Yk(i').

As discussed in Ref. 17, the currents Y(t) and Y0 (t) are non-stationary Gaussian
processes. It follows that Y(t), Y(t), Y(t), and Y 0 (t), are jointly Gaussian processes. The
joint density f yky y can thus be expressed in terms of a covariance matrix A .

Assuming that the filtered current Y(t) and the threshold YG(t) are uncorrelated
processes, the fourth-order density function factorizes into

fYk Yk = En fy (20)

The justification for Eq. (20) is discussed in the next section. Expression (52) for the jointly
Gaussian fry is then used with the general crossing rate Expression (48) to derive a more
explicit crossing rate expression, Eq. (55). Evaluation of Eq. (55) for A, requires the expres-
sions derived in Appendix B for the time-varying current statistics cz(t), ry(t), and rGt) (cf.
Eqs. (3-30) - (B-34)).

The complete expression for the average crossing rate, Eq. (47), generally requires the
numerical integration of a somewhat complicated integrand. The section called Crossing Rates
for Adaptive Threshold Processors is devoted to deriving an approximation to Eq. (47). The
result, Eq. (67), is the principal analytical result of this report.

A Basic Equation for Curve Crossing Rates

The integer random variable J is defined as the number of zero-crossings of a random
process GO') on a time interval t I < T/2. The expected value of J is defined as m1 (O, T).
Thus,

mj(0, T) = E(J}, (21)

13
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RICHARD A. STEINBERG

where El.) denotes an ensemble average. Defining the crossing rate function rhj(1 ) as in Eq.
(12), it can be shown that (cf. Ref. 26, p. 514)

rm(t = fjWGf (04k) dt (22)

The function jGd in Eq. (22) is the joint probability density function of the process GO') and
its time derivative O(t).

Equation (22) is well known; however, most references to it appear to impose a stationar-
ity requirement on G that is not actually necessary. The applicability of this equation to nonsta-
tionary processes appears to have first been recognized by Cramer and Leadbetter 1191.

The domain of integration in Eq. (22) is a matter of some interest. If one wishes to cai-
culate only the expected number of positive slope zero-crossings, i.e., the expected number of
times that both

G t,,) = 0

and

G'(0) > 0

(23)

(24)

are both satisfied on the interval It < T/2, the lower and upper limits of integration in Eq.
(22) should be chosen as 0 and A, respectively. The resulting expression for mJ(0. T),

mj(O,T) = Ori {f Xdkg 19 C'(O'k) (25)

does not include zero-crossings of the type depicted in Fig. 8, for which A < 0. Apparently, rh1
is sensitive only to the "right type' of zero crossing, as defined by the limits of integration in
Eq. (22).

g(t)

Ant}~~~~~~~~~~~~~~~~~

Fig S - A sample function gol) of the random process GO) is dep-
icted as a function of Lime. The particular sample function chosen
has a down-crossing at time A,,>

14
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The process CG(t is now assumed to be formed as the difference of two stochastic
processes Y(t) and Y 0(t). Thus,

G =)_ YW )- Y. (t), (26)

where Y2(t) is referred to as the "threshold process". Without making any assumptions with
respect to the statistics of Y(t) and Y0 (t) (e.g., each process may be both nonstationary and
non-Gaussian) it follows from Eq. (26) that

fgGd (0g)= ffdsdz fa, k (Q4, + -,,7. (27)
The proof of this equation is straight-forward (cf. Ref. 27, p. 131). Assuming that the
processes, Y, 1, Y1, and ',, are jointly Gaussian (cf. Ref. 17 for justification), their joint density
can be expressed in terms of their covariance matrix [271 A. The matrix A has four rows and
four columns, for a total of sixteen elements. Written in partitioned form, we have

A -{ C ClJ (28)

where the superscript T denotes the matrix transpose operation. The submatrices C, C(,, and Cl
are defined as

C={ CY(t) Oy("01 (29)

Cky(tf) CF 2 (1)F

CO- IC (u) a- (t) (30)

and

Cv("t) C~A'.') 1
C j C= Atf) CA''ftl) (31)

The scalar covariances that comprise these elements are defined by

CABOtl,t 2 ) A E O'A(1) - mA (t)J IBOt2) - maO'J}, (32)

where A and B take on the values Y, Y, Y,,, and Y,, as appropriate. Also,

mA(t) E[A(0) (33)
and

A0) CAA(tI)- (34)

It follows from Eq. (32) that Cyy(t,t) - CyR(r,t) and Cp , (tt,) = CY,, (,t). Thus, the
matrices C and C,, are symmetric.

15



RICHARD A, STEINBERG

The elements of C are obtained directly from Eqs. (B-17), (B-20), and (B-23):

a4 r) = eImrO') G/i t)). (35)

a} f,r) = e mx(t) G [h(i)?12 1 (36)
and

cyyttt) = a- yt) & y(t), (37)

where e is the electronic charge, hAt) is the impulse response of the post-detector filter (ct
Fig. 1), mn(t) is the mean value of the current XtO) (cf. Fig. 1), and ® is the convolution
operator:

fet) ® gO') flft-x)g(x)dx. (37a)

The relationship of mx(i) to the radiance of the scene under observation and the optical
parameters of the IRST sensor is discussed in Appendix A, and expressed quantitatively by Eq.
(A-2).

Expressions for the elements of Eq. (30) may be obtained as direct adaptations of Eqs, (35)
(37). It follows from Fig. 2 that

Ye,,t) = Kh,, (-Td) G X(t), (38)

where h,() is the Fourier inverse of H1-4f). Taking the expected value of both sides of this
equation, we have

ty" {:= Kh0(t-T,) 0i mx(t) (39)

which is analagous to Eq. (B-30). It may also be shown, analagous to Eqs. (35) - (37) that:

a , () = eKmx (i) ® ho ,O- Td). (40)

CD (t) = eKmx(t) ®R ihOt-TH 2 . (41)
and Y

Cyi (tot) = a 0l (1 'r (). (42)

It remains only to formulate similar expressions for the elements of C} in order to complete the
specification of the joint density fF,, yF 

Assuming that the processes YFt) and YP(t) are both derived from the process XC,) by
means of the structure shown in Fig. 2, it is shown in Ref. 17 that, if

hY,('-T) h/I(t) = 0, (43)

then
C = 0. (44)

That is, choosing a sufficiently long time delay Tz1 in Fig. 2 validates the factorization of the
fourth order density f1 t,> v into the product of two second order densities:

11 (yJyJ = f , , (Y.#) fY Y" (y0 4) 1 (45)

16
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From Eqs. (22), (27), and (45),

mt>ll S4d ffdl-qy' (Cn) Jfdklklfyp rgXl (46)

With the change of variable z = 4±ij, Eq. (46) may be written

thml) = Ey, {h" (IIYo o)}r (47)

where, by definition,

and '½OJt( y 0 ,y0 ) I f k-io[,, Jfyyz) dz, (48)

E5 y.} f- f d .4dq fy Q, q) {I} (49)

The quantity mLi, previously interpreted as the zero-crossing rate of the process G (cf. Eq.
(22)), is now interpreted as the threshold crossing rate of the process Y(t) (cf, Eq. (47)).

The quantity

IhJ(fIy,Jy,) =-m-r(f | ) (50)

defined by Eq. (48) will be referred to as the "threshold-conditional crossing rate."

Non-Stationary Gaussian Processes

Further development of Eq. (48) for the threshold-conditional crossing rate is contingent
on obtaining a suitable expression for the joint density fy>. The objective of this section is to
evaluate Eq. (48) for the particular case of a bivariate Gaussian density, Eq. (52).

The justification for assuming a Gaussian distribution for fIy (and hence for fy and ffy as
well) is discussed in Ref. 17. As shown in Ref. 17, the relative error in rhm is approximately
equal to the relative error e in the density function of Y(t),

fAy) aj -i { YVJ (1 + e), (51)

where 0(.) is the Gaussian density function, Eq. (57). The Edgeworth series expansion [16) of
fydy) provides a simple and easily evaluated expression for the relative error e. Sample calcu-
lations described in Ref. [17) show that e is negligibly small for typical system and background
parameter values. Thus, the joint density fry is now assumed to have the following bivariate
normal form:

= {27ira yoz(1-r2 ) /2} exp V Iu +v2 - 2ruv (52)

where the quantities my, cry, az, and r, are obtained from Eqs. (B-30) - (B-34). Also,

17



RICHARD A. STEINBERGi --(y,,-m)/a. (53)

and

v (z-mz)/ayZ. (54)

Substituting Eq. (52) into Eq. (48), it may be shown that [171

mj(dy"Y'( 1-' (rj1R) 44u) to(P) + P F'(p)}. (55)
Cr y

where, by definition:

p {i- f)12 n-j (in, + run7 -.90). (56)

The functions p(.) and to.) in Eq. (55) are defined as follows:

OWx (2n-Y-112 exp(-x 2 /2) (57)

and

(ix) - q dz)dz (5

The crossing rate Eq. (55) is originally due to Cramra and Leadbetter [191.

Equations (47) and (55), together, represent a formal means for calculating the mean threshold
crossing performance of the adaptive threshold processor depicted in Fig. 2. However, the
evaluation of Eq. (47) appears to present some significant calculational difficulties. These
difficulties are obviated by means of the approximate method of evaluation pursued in the fot-
lowing section.

Crossing Rates for Adaptive Threshold Processors

Numerical results obtained thus far indicate that the correlation coefficients r and r,, are
typically much less than unity, as follows:

jrQ)lE = ICy, (st~) [a w4Oa r(t)l-t c< 1 (59)

and

- iC,,( } - ¢Q( Y (1) nr f (OI} << 1, (60)

where Eq. (59) comes from Eq. (B-24), and Eq. (60) is obtained by analogy to Eq. (59).

It follows from Eqs. (47) and (49) that the threshold crossing rate for stochastic threshold
functions Yj,(t) may be written as

rnj') ffd~~~d~ri 6i~Ok~~,tf~ ~ (61)

Equations (59) and (60) permit considerable simplification of the functions appearing inside the
integral in Eq. (61).

18
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From Eqs. (55) and (59):

[" Zjrk(U)thdP) + pDp) (62)

where u, p(I), and FD0, are given by Eqs. (53), (57), and (58), respectively. From Eqs. (56)
and (59),

p (mZ-0)/rZ. (63)

By analogy with Eq. (52), and making use of Eq. (60),

fy.> v(Q, ) = f-i-I k(7uo)1 {n-2! P(Po}j, (64)

where u,, and p,, are defined similarly to Eqs. (53) and (63) as

U= ) - my")/ary (65)

and

pa (in --)/az,. (66)

It follows from Eqs. (61) - (66) and some algebra that

mj(t) = (2ir)-1/2 ___ Fny (mz -mmz) (67)
n- yy. Fyz-m)

where, by definition
2 T2 2aYY ay + ny (68)

and

CYz 2Z (r 2 + (T 2,69aZx Y ± o (69)

The quantities my ('V ery(t), and ay (f, in Eqs. (67) - (69) are calculated by means of

Eqs. (39), (40), and (41), respectively. Finally, the expected number of threshold crossings in
a time interval T, may be obtained as

,(0,T) 0(i (70)

with ,ih,() given by Eq. (67).

Equation (67) provides the basis for analyzing a much broader range of possible adaptive
threshold schemes than Fig. 2 might suggest. For example, straightforward generalizations of
Eq. (67) may be applied to the structures depicted in Figs. 9-11.

19
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X(t)

Ytt}

Fig. 9 - An adaptive threshold schenme is illustrated. Each
of the delay elements introduces a delay of T7 seconds.
The significaace of [he random currents XV, Y(O), and
Y,1(f) is seen by inspection of Fig. 1. Th-e block diagram
shown here is actually just one part of toe threshold pro-
cessing receiver shown in Fig, L.

Y(tf 

XWtl

Fig. 10 - A canlidate adaplive threshold scheme is illus-
trated thal gencralizes the structure of Fig, 9. The
threshold-establishing approach shown here is realized in
terms of a tapped delay line with 2N taps. Once again. the
signifteance of .Yi, fYi, and YJ,(i), follows -Frorm Fig 1.

20
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X(t) SLy D

H ) Ylt)

Fig. It - The tapped delay line adaptive threshold scherme
shown here generalizes the structure of Fig. 10. The transFer
functions II 1/(/), 1-1,2, . . , 2N at each of the 2N taps of the
tapped delay line are design variables, chosen to maximize the
receiver's perform-ance against a particular background scene, Or
set of background scenes, There is no ol pooir reason why the
various delays should be chosen as equal to one another, other
than for fabricational simplicity. More generally, additional
degrees or freedom are incorporated by allowing these delays to
lake on distinct values.

While the function F(m 7 -mz) in Eq. (67) is fairly complicated, its zero-ordinate is

unity:

F(O) = 1. (71)

Equation (71) is a highly desireable feature, as explained in the next section.

It is noted that for uniform backgrounds,'

and (a y,/tT )2 - (Ajf1 /Af) (72)
(rr (T /F) I {Aj,fl / Ap 3 (73)

where Af is the noise bandwidth of H(f), and A]f is the noise bandwidth of HI,(f) (cf. Fig.
2). It follows from Eqs. (68), (69), (72), and (73) that

2 F2 ur (A2/2fI) (74)

and

K 72 _o.2 jI+ (A'ff/AfI (75)

Eq. (73) is derived by assuming d reclanigular-shaped l/(/ loaving an upper cut-off frequlenrcy J, and a noise
bandwidth A/

21
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Equations (74) and (75) are good approximations so long as mv(t) is slowly varying compared
to I (t) and h?,, lt).

DISCUSSION

Experience with the numerical evaluation of Eq. (70), with tiiu(i) given by Eq. (67), has
shown that the principal contributions to the integral m, of Muj accrue in the neighborhood of a
discrete set of times.

Moreover, it has been shown that these important discrete times are of two types:
"mean-crossing times," and "times of closest approach" [171.

Mean-crossing times tl. satisfy the following two conditions simultaneously:

rn v(1 1 ) = in ({ Gij (76)

and

IhYOPO>, > (0,) 777

For each solution of Eq. (76) that satisfies constraint (77), i.e., each time the mean current
my() crosses the mean threshold my C) with positive slope, the expected number of crossings

in., is incremented by unity. Whenever mean-crossings exist during the interval T_> it is gen-
erally not necessary to perform the integral of Eq. (70); in this case, the expected number of
thres~hold crossings mtntO,) is well-approximated by the number of mean-crossing times t,,
during the interval T,,. Clearly, it is desireable that no mean-crossing times exist except when
there is a target in the scene, this may be taken as a reasonable first principle of search set
design for operation against structured backgrounds.

If m1 .t'r) lies below nijl (t) on the time interval T, iLe. if there are no mean-crossings

during T,, the crossing count integral Eq. (70) is generally dominated by contributions accruing
in the neighborhood of "closest approach times" 1 , where by definition

M10", = nz tI,0 . (78>

It follows from Eqs. (67), (71), and (78), that the mean threshold crossing rate for adaptive-
threshold (AT) processors is

/i7.1 0() = (12r)12 I [it (79)

in the neighborhood of all closest approach times. Thus., the complicated function F(-) appear-
ing in Eq. (67) is generally not needed in evaluating Eq. (70).

Analogous to Eq. (79), the mean threshold crossing rate for fixed-threshold (FT) proces-
sors is given by

1},-,, xi 1 I-1K. i _0) (2w}h'2 |-J + | - J {aa

22
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formalism for the threshold-crossing statistics of nonstationary noises, originally developed by Rice,
Cramg'r, and Leadbetter. The present work is pursued further in a companion paper in which various
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in these two papers is directly applicable to design parameter trade-off studies tor infrared search and
track (IRST) devices.
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Equation (80) is derived from the background-conditional crossing rate, Eq. (62), by imposing
a saddle point condition analagous to Eq. (78):

p = (mz -t J/ r = 0. (81)

Alternatively, Eq. (80) may be derived by noting that for fixed threshold processors:

ff2 a2 (82)

and

mn y y, 83)

From Eqs. (68), (69), and (82),

2 2 (84)

and ao a 2 (85)

for fixed-threshold processors. Substituting Eqs. (83) - (85) into Eq. (79), the adaptive-
threshold crossing rate pi/.|- is seen to reduce properly to the fixed-threshold crossing rate 6 F.T
given by Eq. (80).

The advantages and disadvantages of adaptive threshold (AT) processing vis-a-vis fixed
threshold (FT) processing may be evaluated by comparing the crossing-rate expressions in Eqs.
(79) and (80).

It follows from Eq. (80) that fixed threshold processors will suffer background-induced
mean-crossings whenever the peak target amplitude is less than the clutter amplitude. This
situation is depicted in Fig. 6. Thus, it may be said that target-to-clutter ratios less then unity
cause the FT processor performance to be "background-structure-limited" (BSL). In this case,
each "false alarm" can be associated with a structural feature in the backgound. The effect of
quantum noise (as reflected in the magnitude of {T y, for example) is then totally overshadowed
by background structure effects.

Inspection of Eq. (79) and Fig. 7 shows that an Adaptive Threshold (AT) processor need
not suffer background-induced mean-crossings. If the filter H,(f) (cf. Fig. 2 ) can be chosen
such that mt/j;C') "tracks" the background-induced variations in inyGt), the background-induced
mean-crossings can be eliminated.

Such false alarms as then occur are distributed randomly in time, and are not associated
with particular features in the background scene: the residual false alarms are due to quantum
noise. An IRST sensor operating in this regime (e.g., Fig. 7) is said to be "quantum-noise-
limited" (QNL) in its performance. Clearly, QNL (quantum-noise-limited) operation is
preferable to BSL (background-structure-limited) operation.

It should be noted that the adaptive threshold performance advantage just described is
only realized when the background scene is non-uniform. The performance of AT processors is
generally inferior to the performance of FT processors when the background scene is uniform
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and of known brightness. In this case, the adaptive threshold false alarm rate (WARtF(' is
greater (i.e., worse) than the fixed threshold false-alarm rate (PARn->):

FARAT > FARI.-. (86)

In order to make the false alarm rate comparison above meaningful, it is assumed that the
adaptive-threshold gain K in Fig. 2 has been adjusted to achieve equal target-detection sensitivi-
ties for the two processors being compared.*

A false-alarm penalty (PAP) is now defined:

FAP_ l01ogl0 (FARAT/FARF.T. (87)

The false-alarm penalty is a measure of the performance disadvantage that accrues when an AT
processor is used when it truly isn't needed. Eq. (87> may be written as

FAP = 1010oIg {rn Ar/intF dB. (88)

with m',pt and rhPT given by Eqs. (79) and (80), respectively. The evaluation of Eq. (88) is
simplified considerably by making use of Eqs. (74) and (75). It follows from Eqs. (74>, (75>,
(79), (80), and (88) that:

FAP . 2.171 I 11 + 51og0 [1-E(1-a>I. dB, (89>

where, by definition,

£0 -- I Af} 1( 9 0>(90
Af

Equation (89) simplifies still further in the limit a K< 1. Thus

PAP -2.17 a Vtil dB ,<1. (91>

As an example, it is assumed that the threshold-constant K in Fig. 2 is adjusted until " the
threshold is five sigmas above the mean," i.e.,

1 1 (921

when the search set is observing a uniform scene of known brightness. Furthermore, it is
assumed that the noise bandwidth of the target filter H(') in Fig. 2 is twice as large as the
noise bandwidth of the threshold-setting-filter H,(f>,

~~~~~~~~~A 2

It is clSiruel ti ll the ( h Q (rcslml (o1d r / te r,/} Ifs,,(ltl tt )l N ."v y 10> 'Suppol f' s st ris- miv- c tia rgc t- induc tt rcslv ill
croassings.
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It follows from Eqs. (89), (92), and (93) that the false alarm penalty is

LAP = 17.46 dB, (94)

corresponding to a value of FARAT ( adaptive threshold false-alarm rate) about 56 times worse
than FARFr (fixed-threshold false-alarm rate).

Generally, Apf,, should be chosen smaller than Af to both minimize the false alarm
penalty, (Eq. (89)), and to prevent a too-rapid threshold response that would tend to suppress
target-induced threshold crossings. On the other hand, Af, should be chosen large enough to
allow the threshold to accurately follow most of the structure in the background scene. Clearly,
the choice for Af, involves degrading system performance against uniform backgrounds for the
sake of improved performance against non-uniform backgrounds.

It appears likely that a more favorable trade-off could be achieved with the receiver struc-

ture shown in Fig. 9, both from the standpoint of (a) decreasing the false alarm penalty, Eq.
(89), and (b) improving the background tracking properties of my 0,). Equation (79) and the

entire analysis of the preceding section is easily adapted to the structures of Figs. 9-11. The
false-alarm penalty, Eq. (89), decreases roughly as (2N) 1 1 2 for the detector of Fig. 10. The
improvement in uniform background performance thus obtained for large values of N is gained

at the expense of degraded performance against cluttered scenes, as compared to detectors with
small values of N. The good background-tracking capability of the structure in Fig. 9 combined
with the low false-alarm penalty of the structure of Fig. 10 can be obtained by employing a
two-dimensional-detector array with time-delay and integration (TDI) logic.

In order to put this discussion on a concrete quantitative basis, particular background and
target radiance distributions must be chosen, and the mean current inV(t) calculated by means
of Eq. (A-2) in Appendix A. The target detection and clutter rejection capabilities of a given
candidate adaptive-threshold processor can then be analyzed by means of Eq. (79). Intercom-
parisons of the numerical results thus obtained for a variety of different processor structures

should then allow quantitative conclusions to be drawn concerning such issues as:

* The performance penalty caused by failing to match the sensor's instantaneous field-
of-view to the angular size of the target.

* The potential performance advantages of time-delay and integration (TDI).

* The best value of N, and the desireability of having different transfer functions ,,4(f)

for each of the 2N taps in the tapped delay line structure of Fig. 11.

* The advantages that may be gained by employing two-dimensional threshold process-
ing, in which the "target signal" Y(C) and threshold function Y,(W) are derived from detectors
scanning at different elevations.

The only important obstacle to performing analyses of the kind described above is the lack
of high-spatial-resolution, radiometric, infrared background imagery.
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Appendix A

CALCULATING THE AVERAGE PHOTOCURRENT
FROM BACKGROUND DATA

The objective of this Appendix is to present Eq. (A-2), which expresses the average value
of the random current X(t) (cf. Fig. 1),tnmy(t) E{Xff}(A- )
as a function of the scene radiance distribution mt_(r) and a number of important sensor param-
eters.

As derived in Ref. 17,

mxW) = K6R, f MTF(I ( t mUS(f) exp J2irf vdt)f. (A-2}

The various quantities appearing on the right-hand-side of Eq. (A-2} will now be defined.

The constant K,, is given by

K,, = Tr,/1(2j#)2, (A-3

where r,, is the transmittance of the optics, and ]' is the focal length ratio of the optics.

The constant R, is the current responsivity, given by:

RI = ne/lPv, (A-4>

where -q is the detector quantum efficiency, e is the electronic charge, /h is Planck's constant,
and v is the average optical frequency of the incident light.

The variable of integration in Eq. (A-2), f, is the two-dimensional vector spatial fre-
quency. The quantity MTF(t) is the modulation transfer function that characterizes the image
blurring effect of the optical train, normalized such that

MTF(O) = 1. (A-5)

For the detector geometry depicted in Fig. Al. the quantity P&r) is defined as follows:

P3(r) = I I r e 0,1, - (A-6}
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Fig. Al - Focal Plane Geometry. The rocal
plane irradiance is stationary in the coordi-
nate system with origin 0. Vector r,, locates
the center of' a detector of area *

4 deL For
scanning sensors, r0 is a function ol time,

0

The function 5(f) is defined as the two-dimensional spatial Fourier transform of P(r):

=(f) f Pfr) exp(/i27rf r dr. (A-7)

Similarly, mn(f) is the two-dimensional spatial Fourier transform of the radiance distribution
m,(r). It should be noted that m/n(r), like mTy(1) in Eq. (A-2), is an ensemble average value
over the photon fluctuation statistics of the incident light.

The radiance distribution i1j (r) is characteristic of a particular infrared scene, and may be
estimated by means of a radiometric Thermal Imaging System [1,2] (TIS) of higher spatial
resolution than the model system. It is also highly desirable that the dwell time of the TIS be
much longer than that of the model system, since the analysis requires knowledge of the mean
radiance of the scene established by averaging over the photon fluctuation statistics of the
incident light*.

The spectral filter chosen for use with the TIS should match the combined TIS optical
train/photodetector spectral response to that of the model system. This is necessary because
there is no way to reliably calculate the radiance of a scene measured in a waveband AX] in
terms of the radiance of the same scene measured in a different spectral band AX2.

The quantity v in Eq. (A-2) is the focal plane scan velocity, which may be calculated as

lv I 27rf'# D5l,/ T,, (A-8)

where D,,,, is the diameter of the optical aperture, and T7' is the system frame time.

Avcrwaging fnut the phototi noise by eitlhcr increasing the TIS diWCll time or by ttcrfortaing framic additiion dlecrcases the
noisincss otl the TIS imtage, iand imttroves the goodness of' ite T15 imagery as a1n estimate of' s jri.
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Appendix 1

NOISE CURRENT CORRELATION FUNCTIONS

The object of this Appendix is to derive Eqs. (B-30) - (B-34), which are needed to evalu-
ate Eq. (55) for the threshold crossing rate fijQ(f SY_ I).

The starting point for this discussion is the linear system input/output relation between
the random processes XK' and Y(W) (ef. Figure ):

YW) =J 4u X(p0 (s-A). (1-I)

It follows directly from Eq. (B-1) that

1'tFt I, t2) = ff dX 0 (Xr g) ft 01 -X) ft( }, (B-2>

where the covariances C(t k and (Ct are defined by

C1 0t, /2) Et[ Y(fU) -Ylrt] I Y(r 7)-t (r2)I1, (B-3D

and where

1W1 Et) F Y (1) , (B-D}

and

ml~ r) =EIKWL} (11-6)
With the definition

z70 =_ Yi(t), (B-7>

it follows From Eq. (B-3) that

(',xAtl, r2) = C1,2 icY01 ,,0f 1 (B-9)R 

and
c ',,z(1 2) = R0 ,2 A £2) ('1-9)

From Eqs. (11-2), (B-8), and (11-9),

{'A(rt, 12) = dgf -_dAdX (Cv(X, A) /t (t - X) a,2I1 (t-A) (1-103

and

C//I, 12) = ff 4dX (nl}X,) 8 (t-, - 6,2h (/2 - 1J. (B-1-l

Setting i t = - tin Eqs. (B-I0) and (1B-1 I), and noting that

C'Xe(t. 1, = tr$0- E t{Z2 t3 - tl2t IB-(12)
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Appendix A generalizes Eq. (3).

Appendix B generalizes Eqs. (4) and (5).

Eq. (55), originally derived by Cramer and Leadbetter [19], generalizes Eq. (9).

As expected, the analysis in this report reduces exactly to the simple Rice equation
method in the uniform background limit. More generally, the method developed in this report
is also applicable to non-uniform scenes (i.e., scenes containing targets and/or structured back-
grounds).

The techniques developed in this report are applied to the evaluation of a number of can-
didate signal processing structures in a companion paper to the present work [18].

It is noted that tracking algorithms are neither modeled nor discussed, although they may
play an important role in clutter rejection as well as target tracking [201. Moreover, no con-
sideration is given to the availability of target and backgound infrared radiance data suitable as
model inputs. No strategies are proposed for synthesizing IRST processor structures to satisfy
either a poriori performance requirements or optimization criteria. The contribution of this paper
is the formulation of a performance analysis model: Complete descriptions of an IRST sensor
and the radiance distribution of a particular scene are required as inputs. As output, the model
generates the probability that the IRST device declares (rightly or wrongly) a target's presence
in the given scene.

SCANNING BLIP SENSORS: ELEMENTARY CONCEPTS

A Basic Threshold Receiver

In order to provide a frame of reference for the following discussion, it is necessary to
describe a simple IRST receiver structure, and to define the parameters used to characterize
IRST performance.

The probability that the IRST device makes a target declaration when a target is in fact in
the sensor's field of view is called the Probability of Detection (Pf)). The average rate at which
false target declarations occur is termed the false-alarm rate (FAR).

A basic threshold comparison receiver is shown in Fig. 1. The current XCt) at the output
of the detector is input to an electrical filter of transfer function H(f'). The output current
YC') of the electrical filter is compared with a threshold Ye,,(). If Y(r) exceeds the threshold,
the presence of a "target' is declared; otherwise, no target declaration is made. Target detec-
tions and false alarms are both manifested as threshold crossings, suggesting the following
approach to IRST performance assessment:

* The expected number of threshold crossings that a particular processor experi-
ences against a given infrared scene is first calculated. As discussed in Appendix
C, the expected number of threshold crossings during a given time interval may
be interpreted as a probability of target declaration.
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it follows that

CyzC', r} = f_ dpzdX CxP(X, A) hI -x) a,&t( -x) (1-13)

and

a (t) = ff dpdX Cr(XA) a, h(t -X) ah(t-j-z). (B-14)

Setting rt 2= t in Eq. (B-2), and noting that

CyY(tI/) 2 (ay() = Ef Y 2(t)} - m2(t), (B-15)

it follows that

c44{) e ff1 ddX Crr(A X) h (t-X) h (t -A). (B-16)

An expression for Cxx(x, At) is now required before the analysis can be carried any
further. An adaptation of Eq. (4.3.13) on p. 115 of Ref. 28 leads to:

a(t ) = e fJ d~ /
2 ( t-) mn h Qy), (13-1 7)

where e is the electronic charge. Consistency between Eqs. (B-16) and (B-17) requires that

Cyv(X, A) = e mx((A) 8(X,-A), (B-18)

where 8(.) is the Dirac delta function. Covariance functions like Eq. (B-18) are characteristic
of non-stationary white noise [26,29]. From Eqs. (B-13), (B-14), and (B-18),

Cy7 (1, I) = e dA h - At) 6,h (r - ) mx(At) (B-19)

and
0r2(rt) = ef dj [Oah/t'-At)]2 mX(A). (B-20)

Noting that

11(r-At) (h (t-At) = - 0,12(1-A. (B-21)
2

it follows from Eqs. (B-19) and (B-21) that

Cyz(t, F) = 2 eaijii d ilx(tr) 1n1(A)}. (B-22)

From Eqs. (B-17) and (B-22),

Cyzlt, r) = -2 {a yr)) = a IC') & IC'). (B-23)

Defining rlr) as

r(t) = Cyz(r, r) [a yt)a-Z(1)P-, (B-24)
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it follows from (8-23) and (B-24) that

r() = 6-{ yCt)luZ(t) - (B-25)

Taking the expected value of both sides of Eqc (B-1) leads to the result:

m>r) = J _f dL iny(() hO (t). (B-26>

Taking the time derivative of (B-1), we have

YCt) = ZO() =f d4 Xf ( 0 a, -i ( 1-27)

Taking the expected value of both sides of (B-27), we have

m(t) = 5 djL mv(r) at ( -g)-
That is,

mZ(C) = a, {if (t my r) ftC-t)t. (3-28>

From Eqs. (B-26) and (B-28),

tnztO) = mrf(1). (1-29>

Defining the convolution operator as in Eq. (37a), Eqs. (B-26), (1-17), (B-20), (B-29), and
(B-25) may be written as:

my(t) = 1(I> G mr(r), (H-30>

1Jyr) e i(tr) ® mvly(t). (8-31)

ar 2 U) = e thC'()P® myi'). (.8-32>

Cr t ) = in(t), (R-3>
and

rOt) = y tfO)/arzC)1. (B-34)

Equations (B-30) - (B-34) are the desired results.
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Appendix C
RELATIONSHIPS BETWEEN FAR, PI), and mj

Relationship Between FAR and mj

The complete description of an IRST sensor's performance under a given set of opera-
tional conditions requires the simultaneous specification of both the False Alarm Rate (FAR)
and the Probability of Detection (P)) for a "target" within the sensor's field of view. However,
both "false alarms" and target detections are manifested as threshold crossings by the signal pro-
cessor. Thus, the object of this Appendix is to relate the traditional IRST performance meas-
ures, PI) and FAR, to the expected number of threshold crossings m) over prescribed intervals
of time.

It is assumed that the average current mx(t) is known* on an interval of time ItI < T72.

The expected number of threshold crossings on the interval |i < T/2 is defined as
in(O, T). Defining the false alarm rate as the expected number of threshold crossings per
"reference interval" T[,,, the following relationship obtains between FAR and m/:

FAR = (Tred/T) mj(O, T). (C-1)

For example, if FAR is defined as the average number of false alarms per week, Tref is set
equal to the number of seconds in one week; if FAR is defined as the average number of false
alarms per system dwell time, then Tre is set equal to the dwell time (again expressed in units
of seconds).

It is implicitly assumed in Eq. (C-1) that the scene under observation does not include a
target, so that each threshold crossing that occurs gives rise to a "false alarm."

Relationship Between PI) and inj: First-Order Approximation

Although not as straight-forward as Eq. (C-I), a relationship between P0 and m,, can also
be established.

As prelude to the definition of PI), a "decision interval" TF) is first defined. The interval
T.) is presumed to bracket the entire period of time during which the current YO) manifests
target-induced fluctuations.

Assuming that a target is present in the scene, the number of threshold crossings that
occur during the interval T.) is defined as the integer random variable J. The discrete probabil-
ity density function of J is denoted as

The quantity ytr( may he specitied a Ipriori, or it may be calculated in terms ol the radiance at oa prticular back-
ground scene (as discussed in AppIendix A).
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The probability of detection P0 is now defined as the probability that one or more thres-
hold crossings occur during the decision interval:

PV = ./Ji) (e-2)

(The likelihood of a background-induced crossing during To has been neglected,) Unfor-
tunately, the problem of obtaining a formulation for fj appears to be quite difficult [301. The
focus of this paper has been on the development of formulations for the expected number of
threshold crossings:

my--= E{J1 = fA(j) (0-3)

In order to establish a relationship between PD and mj, Eqs. (C-2) and (C-3) are written as:

pD= fJ(t) + f (f) (C-4)

and

ml-=f1 1) + II(J). (C-5)
1 =2

Assuming that the probability of two or more threshold crossings is negligible during the deci-
sion interval Tt0 , Eqs. (C-4) and (C-5) can be estimated as

Po-,1 f) (C-6)
and

mr ~f;,(I). (C-7}

It follows from (C-6) and (C-7) that

pi m T(O 7%). (C-8)

According to Eq. (C-8), the expected number of threshold crossings during the decision inter-
val TF0 provides a good estimate of the detection probability PI), so long as the probability of
two or more crossings during ED is negligible.

Relationship Between PI) and mi: Proposal for a Second-Order Approximation

It appears only reasonable that an improved estimate could be obtained for PI) if the vari-
ance t-21 of J were known in addition to the mean in1 of J. It will now be shown how
knowledge of (r 2 can be used to calculate a second-order approximation for P, (compare with
Eqs. (C-4) and (C-6)):

Pi - J(i) + fyi2). (C-9)

Unfortunately, the technique described in this section for calculating the second-order
approximation to PI) cannot be implemented until a formulation for ,2 is developed artaagous
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to Eq. (67) for mh,. In this connection, it is noted that Bendat has derived an equation for the
crossing count variance of stationary processes [311 His result (cf. also Ref. 30) is far more
complicated than the analagous Eqs. (8) and (9) for mj. Thus, a generalization of Bendat's
result for (a) to the case of nonstationary processes and stochastic threshold functions may
prove to be a difficult problem. Nonetheless, it is now assumed that a formulation for a-j can
be obtained, analagous to the development for mn as noted above and found in the main text.
Analagous to Eq. (C-3),

0,{2 M 22fJ)}m2 (C-10)

Substituting Eq. (C-3) into Eq. (C-10) leads to the following expression for a2:

ad = fil) [1-f0l)j + 4f1(2) [1-fj(l) -fj(2)] + Ej, (C-il)

where

E £ j2f - 2 [f(l) +2f('2)j Xif-IX (C-12)
1=3 /~~~~~-3jif-,=3Jd

Assuming that the probability of three or more threshold crossings is negligible during the deci-
sion interval, Eqs. (C-3) and (C-li) are approximated as:

adml f- ll) + 2fJ(2) (C-13)

a) fiJ II fl) JI + 4,fj(2) [1-fiI) -,fj2)J. (C-14)

Calculation of mj from Eqs. (67) and (70), and an analagous calculation for a) , enables Eqs.
(C-13) and (C-14) to be solved for approximations to /9(1) and J,f(2). The second-order
approximation to P0 is then obtained by means of Eq. (C-9).

If Eq. (C-9) is found to yield an appreciably different result than Eq. (C-6), third-order or
even higher-order approximations to P0 may be required; otherwise, the first-order Eq. (C-6)
is then verified as a good approximation for P0 .
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Fig. I - A basic threshold comparison receiver. The photodetector in this
figure is "idealized", in the sense that it is presumed to have a perfect all-pass
electrical frequency characteristic, the frequency-dependent part of the detector
responsivity is lumped together with the transfer function of the post-detector
filter to obtain '(/). A "target declaration t ' is made whenever the filtered
current Y19} exceeds the threshold level YJG.

* If the specified scene is known to contain a target, the computed probability of
target declaration is interpreted as a Probability of Detection (Ps); otherwise, a
False Alarm Rate (FAR) interpretation is given.

As will presently be discussed, it is highly desirable that the threshold-establishing
mechanism suppress clutter-induced threshold crossings by increasing Y(Ot) when Y&) is
Tclutter-like."

Rather than allow YJ0(t) to take on an a priori constant or functional value, it is necessary
to establish the threshold by some means that "adapts" Yei) to the prevailing background con-
ditions.

A similar type of signal processing problem has been addressed in the radar [21,221 and
sonar (231 literatures. A candidate adaptive threshold scheme adapted from the earlier work
[241 is depicted in Fig. 2.

The block with transfer function exp (-j27rfiT,) introduces a delay of T, seconds, The
triangular-shaped block in this figure denotes an ideal all-pass amplifier of gain K. Note that
the delay time TI, gain K, and transfer functions H,,(f) and H(-f) are all design variables.
Strategies for choosing the design variables in order to satisfy particular performance require-
ments or optimization criteria will not be discussed. This report is devoted to developing a for-
mulation for the expected number of threshold crossings for IRST receivers structured as in
Fig. 2, under the assumption that the design variables have all been specified.
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PASSIVE INFRARED SURVEILLANCE
PART I: MODEL FORMULATION

INTRODUCTION

This paper describes an analytical model for predicting the performance of a particular
class of infrared sensors generically described as infrared search and track (IRST) devices. An
IRST system generally consists of one or more photodetectors located in the focal plane of a
scanning optical telescope, and a complement of signal processing electronics to process the
detected photocurrents. The signal processor's task is to determine whether or not an object of
a particular type (a "target') is anywhere in the sensor's field of view, while keeping the fre-
quency of false target reports to an acceptably low level.

Thus, the Neyman-Pearson criteria conventionally applied to radar systems is appropriate
also as an objective of IRST processor design: the target detection probability (PD) should be
maximized for a given maximum tolerable false alarm rate (FAR).

The IRST is a nonimaging device, as contrasted with forward looking infrared (FLIR)
imaging systems [1,21. The search and track device may be required to keep a full hemisphere
(27r steradians) under constant observation, to have a resolution of one milliradian or less, and
to operate without human assistance for long periods of time. The challenge this presents to
the system designer is further magnified by the abundant opportunities for target/background
confusion offered by such typical background scenes as cloudy skies and cities.

Previous attempts to model background effects on IRST system performance have focused
on the Wiener spectrum approach [3-9], a frequency domain technique originally developed for
calculating the noise variance in communication circuits. Unfortunately, unlike the noise
processes typically assumed in statistical communication theory [10,11]1, the IRST photocurrent
is a highly non-stationary random process. As the sensor scans across a structured background,
the spatially non-uniform scene brightness is mapped into a photocurrent whose mean and vari-
ance are both functions of time. The inadequacy of the Wiener spectrum method under these
conditions has been appreciated for many years [12,13].

The IRST model developed in this paper requires as input complete descriptions of the
IRST sensor and the scene radiance distribution (possibly including a target). As output, the
model generates the probability that the IRST device declares (rightly or wrongly) a target's
presence in the scene. A pfiori knowledge as to whether a target was in fact present in the
specified scene allows interpretation of the probability of target declaration either as a probabil-
ity of target detection (PD) or as a 'false alarm."

Photon fluctuation noise is the only stochastic aspect of the model; the background must
be specified as a radiance map of arbitrary, but deterministic, structure. Thus, the performance
predictions made with this model are background-conditional.

Manuscript submitted February 13, 1979.

1



RICHARD A. STEINBERG

Previous works describing analysis techniques for IRST systems (e.g., Refs. 14 and 15)
are restricted in validity to uniform scenes. The contribution of this paper is an original
method for calculating IRST performance (i.e., the parameters PD and FAR) that is inherently
applicable to non-uniform scenes. The method described here can be used to assess the rela-
tive merits of a variety of IRST system concepts, all operating against a particular infrared
scene. Alternatively, an IRST sensor's background-conditional performance can be evaluated
for each member of an ensemble of scenes, in order to establish ensemble average performance
statistics for a realistic range of operational environments.

Before launching into the main body of analysis, a treatment of the elementary concepts
involved is first presented in the next section. The latter part of the subsection (Current Statis-
tics) presents a brief discussion of how values for the mean and variance of a photocurrent
(i.e., the "current statistics") are obtained from knowledge of the brightness of a presumably
uniform background scene.

The final part of the next subsection (Crossing Rates for Fixed Threshold Detection)
presents Rice's well-known equation, which is Eq. (9) in this text, for the threshold crossing
rate of a stationary Gaussian random process [161. Evaluation of Eq, (9) requires knowledge of
the mean value and variance of the Gaussian process. A description of IRST performance
against uniform background scenes is obtained by inserting the current statistics from the
Current Statistics Subsection into Rice's equation, Eq. (9).

Rice's equation, by itself, is devoid of physical content: it applies equally well to any sta-
tionary Gaussian process. All of the physical parameters-the optical and electrical characteris-
tics of the IRST sensor and the radiance of the background scene-are introduced through Eqs,
(3)-(5) for the current statistics.

The method described above, using Rice's equation to evaluate search set performance
against uniform scenes, is well known [4,141. Since a target's presence in the scene would
necessarily render the scene non-uniform, and since the method based on Rice's equation is
valid only for uniform scenes, Rice's equation can be used to calculate FAR, but not PA.

The first method presented for calculating search set performance against non-uniform
scenes is given in the Non-Uniform Scenes Subsection. Although this method is a simple,
heuristic, extension of the well-known uniform background result reviewed in the subsection
on Uniform Scenes, it appears to be original. The heuristic approach of the subsection on
Non-Uniform Scenes has the advantage of being both easy to understand and easy to apply.
Moreover, comparison with rigorous methods indicates that the heuristic method yields numeri-
cally accurate performance predictions as long as the variations in the background scene are not
too rapid [17,181.

The IRST performance model developed in the Analysis Section is a rigorous generatita-
tion of the Rice equation method. In fact, a point-by-point correspondence can be established
between the simple, well-known analysis of the Uniform Scenes Subsection and the more gen-
eral, new analysis in this report.

2
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exp l-j2n1`Tdl [J2ŽflJ--J'4.--..' volt

xM t 21 -E _Y(t).
Fig. 2 - A simple adaptive threshold scheme is illustrated. The transfer
function exp(-.j27r/ T,) introduces a delay of 7,b seconds, ensuring
decorrelation of the random processes Y(;) and Y,(;). The significance of
the random currents is seen by inspection of Fig. I.

Uniform Scenes

Current SfafiSrtcs

When the sensor of Fig. 1 scans across a uniform background scene, the output current
Y(t) is "statistically stationary." The meaning of statistical slationarity will now be discussed as
background to the discussion of non-uniform scenes and non-stationaTy processes that follow in
the Non-Uniform Scenes subsection.

It is assumed that the sensor is scanned and re-scanned over the same scene, and that
there are no changes in either the scene or the sensor from one scan to the next.

The current y(t) during the course of any one particular scan is called a "sample func-
tion'* of the random process Y(t). (The process Y(t), in turn, may be thought of as the
infinite ensemble of possible sample functions.) The current sample function obtained on the
it " scan is designated y(r;n). We now consider a particular one of these sample functions,
y0r0l), depicted in Fig. 3.

The time variations in y(t;l) have their origin in the time-of-arrival fluctuations of the
individual photons incident on the detectors Thus, the fluctuations in yt;l) are independent
of the scan velocity and are present regardless of whether the sensor is scanning or motionless.
The average current at a particular instant of time i,, may be defined as the "ensemble average":

fllV(t,)-- lim }-- X '£,;0 Ef Y(t) 1 (1)

In order for Y(t) to be a stationary process, it is necessary that my(t), as defined in Eq. (1), be
independent of time. Thus,

Iny tV,) = yt 1),

Consistent with a convention of random process theory, slochvlsic quantitics are assigned capitl) letters, with sample
values designated by the corresponding lower case lctlers.

tThis kind of noise is often called "photlon fluctatin oDise' or "quantuM noisC." When the quantumn noise associated
with the background light is the dominant noise type in the sensor, the sensor is said to be operating in the "Back-
ground Limited Performance" (BLIP) regime.
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"I 1~

Fig. 3 - Three sample functions of the random
current YV} are shown as functions of time. The
current Y(t) is taken at the output or the post-
detector filter as the sensor is scanned over a uniform
scene (cf. Fig. 1Ii The sample functions are desig-
nated v te), ri = 1. 2.3, . . The sample functions
display random time variations caused by Lime-of-
arrival fluctuations of the individual photons incident
on the detector. Since the current HO;) is stationary,
the ensemble average mean value (variance) defined
by Eq (i) (Eq (2)) is the same at time 1,1 as at time
i1, where times y, and tj are arbitrary.

I1

where the times i, and t1 are totally arbitrary (c. Fig. 2). Similarly, the mean-square deviation
of Y(e) from its average value (i.e., the "variance" of P may be defined at each instant of titme
as

(2)07 2t) = m ln y i 1- i [Y ;n) - m (t)j' _E(1YW -a11M,w 111.8Y~ r li m N N~ 'I Y ( - m IP II

The variance cr% like the mean my, is independent of time for stationary processes.

Equations (1) and (2) are satisfactory for illustrating the concept of "ensemble averaging";
however, it is desireable to have a different means for actually calculating the values of m}I and
r V in terms of standard background and sensor parameters.

It is first necessary to define the average value my of the current X(t) (cf. Fig. 1):

my = EtXW] = 'TemQo,

where

1 = quantum efficiency of the detector electronsIphoton JI
e = electronic charge colob

Ielectron j1
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and

mQ = average background photon flux I photons incident on the detector.

It may be shown that for sensors operating in the BLIP regime the mean value and variance of
Y(t), originally defined by Eqs. (1) and (2), can be calculated in terms of mx as follows:

my= H00) mx, (4)
and [25]

a, 2 2emxAf, (5)

where H(O) is the zero-ordinate of the transfer function H(f) (cf. Fig. 1), and Af is the noise
bandwidth of H(f). For bandpass H(f), 1(0) = 0. It follows from Eq. (4) that my. = 0 for
this case.

Since the scene is spatially uniform, the average photon flux mQ is independent of time.
2It follows from Eqs. (3) - (5) that the mean my and variance a- y are also independent of time,

justifying the claim of stationarity for the current Y(r),

Assuming that the transfer function H(f) is normalized as follows:

max 11(f) = 1, (6)

the noise bandwidth Af in Eq. (5) may be calculated from the equation:

Af =fo|~d| f (7)ŽIfJ IH(f)I12 df.()

Crossing Raresfor Fixed Threshold Detection

It is now assumed that the signal processor of Fig. 1 is implemented such that the thres-
hold y0 is equal to a constant. The fixed threshold y0 is depicted on the sample function plots
of Fig. 3. A brief outline will now be given of a method for calculating the average number of
times mj that the random process Y(t) crosses the threshold during a time interval of duration
T seconds. (The relationship between the mean number of crossings mj and the usual search
set performance parameters PD and FAR is discussed in Appendix C.)

The expected number of threshold crossings mj(0, T) during the time interval ItI < T12
may be written in terms of a "crossing rate" ih' as:

mj(0, T) = dz1T (8)

According to Rice [16], mhj may be calculated as

myj inm0 exp (-u 2 /2), (9)

where

Ioo-|iS~f 1~o ,f2Hlf)1,f2d11 (10)

7
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with Af given by Eq. (7). Also,

u ( 0 m /a,0 1)

with my and cry given by Eqs. (4) and (5).

The quantity a defined by Eq. ( 1) may be thought of as a normalized threshold level.

It follows from Eq. (9) that the expected number of threshold crossings drops off rapidly
as the theshold level is increased.

Finally, it should be noted that the uniform-background threshold crossing formalism
described above cannot be used to calculate the expected number of threshold crossings associ-
ated with a target's presence in the scene', because a target's presence would render the scene
non-uniform.

Non-Uniform Scenes

Current Suatist/cs

It is now assumed that the sensor of Fig. I is scanned a number of times over the same
non-uniform scene, and that there are no changes in either the scene or the sensor from one
scan to the next. A number of sample functions of the resulting current process Y(s) are dep-
icted in Fig. 4.

Once again, the ensemble average mean and variance of YKt) are defined by Eqs. (I) and
(2). However, as discussed next, Y(t) is now a non-stationary process, i.e, my andi cr are
functions of time.

As an illustration of how such non-stationary processes arise, it is now assumed that the
infrared scene encompasses regions of blue sky and clouds where

mQ tB>)= average photon flux incident on the detector when blue sky is being observed,

and

m(t,.) = average photon flux incident on the detector when cloud is being observed.

The photon flux mq in Eq. (3) is seen to be a function of time: mQ(t) takes on the value
mQ(tc) at a time t( when a cloud is in the field of view, and it takes on a different value
mq(ta,) at a time tgs when the scanning ficid of view includes only blue sky. Thus, the process
Y(t) is non-stationary when the scene is non-uniform, because the mean and variance of Y(t)
are seen from Eqs. (3)-(5) to be functions of timet.

As discussed in Appendix C, the incremental number of threshold crossings aISSociLtCd with a target's presence in the
scene provides an estimate orf the convcntional scarch set parameter PO. By dehoitiontr, PD is the pfobability ol tawrget
detection.

tFor the present, it soUlies to say that the forms of Eqs. (41 and 151 indicatc that a time-varying mtr must give rise to
time Varying mny andI J}'. Hoeifwver, i( shoutd be noted that Eqs. (41 and. 15) aLre only stritly Vaid for stationary
processes, i.e., For time-invariant t y. Gcnerazailtions of Eqs (41 and 15) valid for both stationary and notn-sttionary
proeisses are given by Eqs. (B-30) and IB-3 II .

g



NRL REPORT 8320

ytt;1t mt

Fig. 4 - Three sample functions of the ran-
dom current Y(Q) are shown as functions of
time. This figure is similar lo Fig. 3, except
the sensor is now presumably scanned aver y(t;21
a non-uniform scene. The time-varying
ensemble average my(r) of YWl) is shown as
a dashed curve superposed on each of the
three depicted sample functions (solid t
curves). The ensemble average 'oi is still
defined by Eq. (I); however, the fact that
{, is now a function of time implies that
YFt) is now a nonstationary random pro-

cess
y tr:3

The time-varying mean value mny(i) is superposed as a dashed curve on each of the sam-
ple functions y () depicted in Fig. 4.

Crossing Rates for Fixed Threshold Detection

The performance of a fixed threshold signal processor (cf. Fig. 1) against a non-uniform
scene can be characterized in terms of the quantity mn1, where*

m1(0,T) EF(J}= f,. ,h,(')d, (12)

where T, is the time interval It I < T/2, J is an integer random variable equal to the number of
times that the current Y(t) crosses the threshold level Y,, during the time interval T,, and E1.1
is the statistical expectation operator as defined in Eqs. (1) and (2). Equation (12) is a straight-
forward generalization of Eq. (8) to allow for the possibility of time-variable threshold crossing
rates tij.

As long as the time variation of ,nzl) is slow compared to the time variation of the
impulse response h(t) of the post-detector filter (cf. Fig. 1), a good estimate for th,(l) can be
obtained from Eq. (9).

Cf. Appendix C ror a discussion of tlhe relationship ol' mj(0, T) to the usual IRST performance pirLmeters 1'0 and
FAR.
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The following steps are then followed in calculating mj(O,T):

a. The time-varying mean current rn(i) is derived from the time-varying photon irradi-
ance mi() by means of Eq. (3). (A detailed formulation for mn/i) in terms of the back-
ground radiance distribution is provided in Appendix A.)

b. Estimates of m,(t) and 4r(') are obtained from Eqs. (4) and (5). (More rigorously,
Eqs. (B-30) and (B-31) may be used to obtain my(t) and ai(r).)

c. Equation (11) is evaluated for the time-varying normalized threshold td(t),

d. Equation (9) is evaluated for the time-varying threshold crossing rate ihm(t)

e. Equation (12) is evaluated for the expected number of threshold crossings m.(O, T)

Numerical examples following the above prescription typically show that the crossing rate
function 6ij(t) is extremely sharply peaked (cf. Fig. 5). Consequently, appreciable contribu-
tions to mj(0,T) only accrue in the near neighborhood of points such as t, in Fig. S. It is
shown in Ref. 17 that the time t, in Fig. 5Sb is a saddle point of the crossing rate integral Eqw
(12), and that Eq. (12) may be approximated asymptotically as:

(13)

with 6i,(t,) obtained from Eq. (9), The quantity 8t, is the effective interval of time during
which myn/) remains in the near neighborhood of its peak value, from the standpoint of cross-
ing rate calculations. An expression for st,, is derived in Ref. 17.

The implications of Eq. (13) for system performance are illustrated with the aid of Fig. 6.

mYlt) t

Yo

Fig. S - Part a) is an ittustrative plot of rny(t> vs {,
where iy is the mean value ol the filtered current
Y()i Also shown is a constant threshotd current
Y_, lying above the peak value of m1 h. The function
MoYO1) takes on its peak value at the time it,

Part (b) is a piot ol the thfeshold crossing rate
to1TO corresporlding to the threshold v,, anrd mnean
current mty(S) of part (a). The entire contribution
to the crossing rate integral, Eq. l 2( . accrues in the

very near neighborhood of y.

(a)

(a)

t
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